INDIAN STATISTICAL INSTITUTE, BANGALORE CENTRE B.MATH - Second Year, Second Semester, 2011-12 Statistics - II, Midterm Examination, February 24, 2012

- 1. Suppose X_1, X_2, \ldots, X_m and Y_1, Y_2, \ldots, Y_n are independent random samples, respectively, from $N(\mu_1, \sigma_1^2)$ and $N(\mu_2, \sigma_2^2)$, where $-\infty < \mu_1, \mu_2 < \infty$, $\sigma_1^2 > 0$, $\sigma_2^2 = 2\sigma_1^2$.
- (a) Does this model belong to the exponential family of distributions? Justify.
- (b) Find minimal sufficient statistics for the unknown parameters. Is it complete?
- (c) Find the MLE and UMVUE of σ_1^2 .

[15]

- 2. Consider a trial which ends up in 'Success' with probability p or 'Failure' with probability 1-p, 0 . Let <math>X denote the number of independent trials required to obtain the first 'Success'.
- (a) Find the probability mass function of X.
- (b) Find the Fisher information of p contained in X.
- (c) Let X_1, \ldots, X_n be a random sample from the distribution of X. Find the Cramer-Rao lower bound on the variance of an unbiased estimator of $\frac{1}{p}$ based on this random sample. [10]
- **3.** Consider a random sample X_1, X_2, \ldots, X_n from any distribution with a finite variance $\sigma^2 > 0$.
- (a) Show that $\frac{1}{n-1} \sum_{i=1}^{n} (X_i \bar{X})^2$ is an unbiased estimator of σ^2 . Now suppose that X_i are i.i.d. Bernoulli(p), 0 .
- (b) Find the complete sufficient statistic for p.
- (c) Show that $\frac{1}{n-1} \sum_{i=1}^{n} (X_i \bar{X})^2$ is the UMVUE of p. [12]
- 4. Consider a family of regular models with density $f(x|\theta)$ such that $f(x|\theta) > 0$ for all $\theta \in \Theta$ and for all $x \in \mathcal{X}$. Suppose T(X) is sufficient for this family of distributions indexed by θ . Show that if T(x) = T(y) for two sample points x and y then $\frac{f(x|\theta)}{f(y|\theta)}$ is free of θ . [5]
- 5. Consider a family of regular models with density $f(x|\theta)$ such that $f(x|\theta) > 0$ for all $\theta \in \Theta$ and for all $x \in \mathcal{X}$. Suppose $\Theta \subseteq \mathcal{R}^k$ where $k \geq 1$. A random sample, X_1, X_2, \ldots, X_n of size n > k is available. In this set-up give an example each of the following kind.
- (a) Method of moments estimator of θ exists but MLE does not exist.
- (b) MLE of θ exists but Method of moments estimator does not exist. [8]